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ABSTRACT 
The NIRVANA project is concerned with the development of a nonoscillatory, integrally reconstructed, 
volume-averaged numerical advection scheme. The conservative, flux-based finite-volume algorithm is built 
on an explicit, single-step, forward-in-time update of the cell-average variable, without restrictions on the 
size of the time-step. There are similarities with semi-Lagrangian schemes; a major difference is the 
introduction of a discrete integral variable, guaranteeing conservation. The crucial step is the interpolation 
of this variable, which is used in the calculation of the fluxes; the (analytic) derivative of the interpolant 
then gives sub-cell behaviour of the advected variable. In this paper, basic principles are described, using 
the simplest possible conditions: pure one-dimensional advection at constant velocity on a uniform grid. 
Piecewise Nth-degree polynomial interpolation of the discrete integral variable leads to an Nth-order 
advection scheme, in both space and time. Nonoscillatory results correspond to convexity preservation in 
the integrated variable, leading naturally to a large-Δt generalisation of the universal limited. More restrictive 
TVD constraints are also extended to large Δt. Automatic compressive enhancement of step-like profiles 
can be achieved without exciting 'stair-casing'. One-dimensional simulations are shown for a number of 
different interpolations. In particular, convexity-limited cubic-spline and higher-order polynomial schemes 
give very sharp, nonoscillatory results at any Courant number, without clipping of extrema. Some practical 
generalisations are briefly discussed. 

KEY WORDS NIRVAVA scheme Large time-step Advection-dominated flow Shape-preservation Higher-order 
methods Conservative scheme 

INTRODUCTION 

Numerical simulation of highly advective flows presents one of the most striking challenges of 
computational mechanics. Even the apparently simplest of physical problems—pure one-
dimensional advection of a scalar profile at constant velocity (u = const >0), described by, 

is plagued with difficulties. Standard methods for simulating the evolution of the scalar from 
an initial profile, (x,0), typically show strong distortion due to numerical smearing, unphysical 
oscillations, or both. By contrast, the analytic solution consists of a simple translation of the 
initial profile, 
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This solution is sometimes used as the basis for a numerical advection scheme. For example, a 
hierarchy of explicit advection schemes based on transient interpolation modelling1 use (2), 
written for a single time step, 

In general, xi —u∆t does not lie at a grid point, so spatial interpolation of " is used to evaluate 
the right-hand side. For a Courant number, 

less than one, where h is the mesh spacing, (3) can easily be rewritten in a conservative, 
pseudoflux-difference form. Recursive formulae for (in principle, arbitrarily) high-order advective 
fluxes were derived in Reference 1; these, together with universal limiter constraints, give highly 
accurate, nonoscillatory results. However, in that particular formulation, the time step is restricted 
by the condition c≤1 . One of the main aims of the present paper is to extend these techniques 
to large Courant number. 

Semi-Lagrangian schemes2 are also based on (2). They are designed to operate at large ∆t 
but are not inherently conservative, although approximate conservation can be enforced 

using a recently developed technique3. The so-called modified method of characteristics4, MMOC, 
is closely related to semi-Lagrangian schemes, but rewritten (for one dimension) in a strictly 
conservative flux-based form. In its published form, MMOC is based on a number of time- and 
space-centred assumptions, effectively restricting it to second-order accuracy, although it appears 
that higher-order extensions could be developed. Similar comments apply to the large-time-step 
methods devised by LeVeque5. 

Finite-volume methods6 are constructed by integrating (1) spatially across a control-volume 
cell, and in time from t to f + ∆t, giving (for a uniform grid-spacing), 

where the bars represent spatially-averaged cell values across cell i, and right and left time-averaged 
face values have been introduced. This is still an exact representation of the physics (for 
constant c), equivalent to (1). 

Ideally, a practical advection scheme should possess the following properties: 
(i) Single time-step explicit update. This is potentially very efficient, both in terms of storage 

(only one time-level is stored—and then overwritten) and computation (because of 
vectorizability and the possibility of parallel processing). 

(ii) No Courant number restriction. According to the so-called CFL condition for hyperbolic 
equations, the numerical domain of dependence (at time-level n) should include the 
physical domain of dependence (as a necessary stability constraint)7. But, for any 
numerical scheme, the discrete solution is known everywhere at time-level n; therefore,. 
there should be no CFL stability restriction on the Courant number. The reason that 
many explicit schemes do require a Courant-number constraint stems from a range 
restriction on local interpolants (see later). 

(iii) Conservative, flux-based, finite volume formulation. In a finite-volume formulation, the 
advective (plus diffusive) flux at any cell face is simultaneously an outflux from one cell 
and an influx into the respective adjacent cell sharing the face. 'Mass' is therefore 
conserved, to machine accuracy. The most straight-forward finite-volume formulation 
involves cell-average values as dependent variables. In this case, sub-cell interpolation 
is needed in order to calculate fluxes. 

(iv) Highly accurate, with shape-preserving features. If the initial profile involves short-
wavelength components (especially near-discontinuities), the evolving profile in highly 
advective flow should maintain high resolution of these features, without unphysical 
overshoots or oscillations, and without numerical smearing. This implies good phase 
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accuracy (low numerical dispersion) and small numerical dissipation. This is intimately 
connected with achieving high-order, shape-preserving sub-cell interpolation. 

The larger NIRVANA project is concerned with the development of a nonoscillatory, integrally 
reconstructed, volume-averaged numerical advection scheme. The conservative, flux-based, 
finite-volume formulation is based on a single-time-step explicit update, without stability 
restrictions on the time-step. The following sections outline the basic principles in the simplest 
case of one-dimensional pure advection at a constant velocity on a uniform grid. Some suggestions 
for generalisation are given in a later section. 

BASIC PRINCIPLES 

The one-dimensional NIRVANA explicit update is based on (5). In order to calculate the 
time-averaged face fluxes on the right-hand side, it is necessary to have a good estimate of the 
sub-cell behaviour of (x). This introduces a basic numerical problem: given a set of values of 
cell-average data, at the earlier time-level, find an appropriate sub-cell interpolation to give 
(x), while satisfying the cell-average constraint across each cell, 

where xi is the coordinate at the centre of cell i. Then, knowing the sub-cell behaviour of (x), 
estimate the time-averaged face fluxes based on a local solution of the continuous problem near 
each face. For purely advective flow at constant velocity, the latter step is particularly simple. 
For example, the left-face flux is found by converting the time integral into a spatial integral 
(noting that u∆t = ch and udt = dx): 

where conservation is guaranteed by, 

Equation (5) can now be updated, and the process begins all over again. 

Integral reconstruction 
In one dimension, the simplest way to find a sub-cell variable (x) satisfying (6) is to define 

a discrete integral variable in terms of local cell-average values by, 

By recursion, ψi is the cumulative sum of cell-average values, 

for constant h. Thus, given a set of cell-average values, a corresponding set of discrete ψi 
values can be constructed recursively from (9). Note that, from the definition, ψi occurs at the 
right-hand face of cell i (and, correspondingly, ψi-1 is at the left face of cell i). 

Now the crucial step in the NIRVANA strategy is to perform an appropriate interpolation 
of ψi, collocated at all ψi, values, to give the sub-cell integral variable, 

ψ(x) = INTERPOLATION OF (ψi) (11) 
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satisfying the collocation conditions, 

Note that ψ(x) is necessarily continuous, although its first and higher derivatives may not be. 
The sub-cell interpolation of (x) is given by differentiation, 

thus automatically satisfying the cell-average constraint, (6); i.e., 

This is the same procedure as that recently advocated by Hyman et al.8. The basic idea was 
originally introduced by Colella and Woodward9. From the definition, (13), it should be clear 
that (x) may involve discontinuities in value. For example, (nonphysical) discontinuities in {x) 
across cell faces correspond to discontinuities in the gradient of ψ when piecewise interpolants 
are used. Jumps in (x) may also occur anywhere, representing sub-cell resolution of physical 
discontinuities. 

For pure advection, the face fluxes can be calculated directly from the integral variable, ψ(x), 
as shown below. The sub-cell scalar itself,(x), is not actually needed for the update, but it can 
be retrieved at any time (e.g., as a post-processing operation) from (13). Rewriting (7) in terms 
of ψ(x) gives, for the left-face flux integral, 

with cr(i) given by the usual conservation requirement, (8). Note that there is no restriction on 
the Courant number, c. The crucial step is the evaluation of ψ* in (15). Thus, for pure 
one-dimensional advection at constant velocity, the update of (5) proceeds as follows: 

(i) Given the current set of values, construct ψi from (9). 
(ii) Perform an appropriate interpolation to give ψ(x). 
(iii) Compute c,(i) from (15) and store. 
(iv) Then update explicitly, using (8) for cr{i): 

where superscript ' + ' represents the new time-level, and the superscript V has been dropped, 
for convenience. Note that steps (i) and (iv) involve very little computational effort, and step (iii) 
requires only a single evaluation of ψ, at (xi—h/2 — ch), denoted as ψ*. The main bulk of the 
work is in the interpolation of ψ(x), step (ii). As will become clear, the overall algorithm intimately 
involves the 'remnant Courant number', ∆c, defined by, 

where the integer part of c is given by, 

Computationally, the update cost is essentially independent of the value of N; thus, a large-∆t 
update costs the same as a small-∆t update having the same Ac value. Clearly, an explicit update 
with unrestricted Courant number can lead to substantial efficiencies, in comparison with schemes 
requiring c< 1. 
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INTERPOLATION OF ψ(x) 

In this section, several forms of interpolation are used to estimate ψ(x). Some of these lead 
naturally to a number of well-known advection schemes for |c|≤1, and automatically generate 
their large-∆t extensions, as well. Thus, for example, piecewise linear interpolation of ψ leads to 
first-order upwinding6 (and its large-∆t extension); piecewise parabolic interpolation of ψ leads 
to second-order methods such as those of Lax and Wendroff10 or Leith11, second-order 
upwinding6, and Fromm's method12 (together with their generalisations to arbitrarily large c), 
Piecewise cubic interpolation of ψ leads to a scheme equivalent to QUICKEST13 and its large-∆t 
extension. 

Continuing with higher-order piecewise interpolants leads to a hierarchy of advection schemes 
defined recursively. For |c|≤1, these are equivalent to the higher-order (unlimited) transient-
interpolation-modelling schemes described in Reference 1, but NIRVANA also automatically 
gives the |c|>1 generalisations, as well. Cubic-spline interpolation of ψ (corresponding to 
parabolic-spline interpolation of ) is also considered. Cell-centred interpolants (e.g., the 
odd-order methods considered here) are independent of the direction of the convecting velocity 
(i.e., the sign of c), By definition, however, upwind- or downwind-biased interpolants depend on 
the sign of c. In this respect, one should distinguish between the 'natural upwinding' involved 
in the flux integral, (15), and the (upwind or downwind) bias in the sub-cell interpolation of ψ (and 
). Thus, for example, first-order upwinding is an 'upwind' method due to the natural upwinding; 
the sub-cell interpolation of ψ (and ) in this case is cell-centred. 

Except for the highly diffusive first-order method, none of the interpolations described is shape 
preserving; i.e., they may introduce extraneous extrema in  (or equivalently, extraneous 
inflection-points in ψ). In some cases—in particular, velocity-direction-dependent, even-order 
interpolations of ψ—serious numerical dispersion occurs, leading to disruptive unphysical 
oscillations. Odd-order velocity-direction-independent interpolation schemes are much less 
dispersive, but still generate small overshoots or undershoots near sudden changes in the gradient 
of . 

This type of distortion can be eliminated by constructing simple local convexity-preservation 
constraints on the ψ interpolant, which amount to ensuring that there are no extraneous 
inflection-points. This turns out to be entirely equivalent to the universal limiter1 for c≤1 , but 
automatically extended to large c, as well. A somewhat more restrictive convexity constraint on 
ψ leads to the large-∆t generalisation of the TVD limiter14. 

In order to evaluate and compare a number of schemes based on various interpolations of 
ψ, a simple test problem has been set up. The set of test profiles is shown as an initial condition 
in Figure 1. The computational domain consists of a uniform grid of 150 mesh-widths. The initial 
profiles include a rectangular pulse, a single wavelength of a sine-squared profile, a semi-ellipse, 
and a triangle, all 20 h wide at the base, together with a Gaussian pulse with standard deviation 
σ = 2.5h. These are shown by the dashed curves. Corresponding cell-average values are shown 
as horizontal lines—i.e. as a bar-graph or histogram. The flow is from left to right for positive 
c, and periodic boundary conditions (on ) are used. Length and time scales are normalised so 
that the only parameters are the Courant number and the total number of time-steps. Since ψ 
is an integral variable, periodicity in  implies a continual increase in ψ (equal to the total 'mass' 
of all profiles) for each 'wrap-around' of the domain. This is seen in the lower half of Figure 1, 
which also shows first-differences of  (_=second-differences of ψ). Details of this, together with 
formulae for the initial conditions for iand ψi, and the exact interpolants, ex(x) and ψex(x), 
are given in the Appendix. 

Unsophisticated interpolation methods 
As mentioned before, the crucial step in the NIRVANA procedure is the interpolation of the 

discrete ψi values to give ψ(X). For pure, one-dimensional advection at constant velocity, this is 
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the only approximation; all other steps in the process are exact. In this sub-section, a number of 
simple interpolation schemes are considered; these lead to some well-known explicit advection 
schemes and their large-∆t extensions. Figure 2 shows a schematic diagram of an interpolation 
of ψ in cell (i —N — 1); this is used in the evaluation of the left-face flux of cell i, according to (15). 
The interpolated value is denoted by ψ* = ψ(x*), where x* = xt—ch and c = N + ∆c, according 
to (17) and (18). 

The simplest possible scheme is shown in Figure 3. This is piecewise linear interpolation of ψ 
(which happens to be shape preserving—but, as will be seen, very inaccurate). In terms of the 
local spatial coordinate, ξ = x—(xi_N_1 +h/2), the first-order formula for ψ, across cell (i—N— 1), 
is, 

or, equivalently, from (f4) written for cell (i—N— 1), 
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where the superscript indicates that the interpolation is cell-centred. This gives a corresponding 
piecewise constant interpolation for , 

across cell (i — N— 1). The interpolated ψ* value is obtained by setting ξ = — h∆c, giving. 

Substitution into (15) gives, for the left-face flux, 

which can be rewritten, using (10), as 

And, by conservation, the right-face flux for cell i is, 

This gives the first-order update formula, 

equivalent to, 

in which the right-hand side can be interpreted as a first-order update of cell (i — N) using the 
remnant Courant number, Ac. Of course, if c< 1, then N = 0 and Ac = c; this gives the well-known 
update formula for first-order upwinding6. Equations (24)-(27) have been written out in order 
to understand the basic structure of the scheme; the NIRVANA update itself is based entirely 
on (23) and (16). 

Results of using the first-order method on the test problem are shown in Figure 4, after 100 
time-steps. The Courant number is 10.2 (N=10, ∆c=0.2). This means that the exact profiles 
would have been translated 1020 mesh-widths to the right; i.e., six times through the periodic 
domain, which is 150 h in length, plus an additional 120h. The exact profiles are shown by the 
dashed lines. The computed values of are shown by horizontal bars within each cell; because 
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of the piecewise constant 'interpolation' in this case, these also represent (x). The most obvious 
feature of these results is the gross numerical diffusion, typical of the first-order method. Even 
after a small number of time-steps, the various profiles lose their individual features and degenerate 
into blobs resembling spreading Gaussians. As will be seen, the artificial diffusion depends on 
∆c. If c happens to be an integer (∆c = 0), exact cell-to-cell transfer is obtained over N mesh-widths. 
This is true for all NIRVANA methods, since, in this case, ψ* = ψi-N-1, regardless of the 
interpolation formula. 

The lower part of Figure 4 shows the exact ψ(x) (dashed), together with the piecewise linear 
interpolation of the computer ψi values (solid lines). For the higher-order methods discussed 
below, the computed values of ψ are almost indistinguishable from the exact values. The fact 
that there are obvious differences in this case is indicative of the first-order method's very poor 
performance. The remaining diagnostic in the figure (shown by heavy dots) represents the 
first-difference of computed values (or second-difference of ψ values), 

Note that bi (along with ψi) occurs at the right face of cell i. The small vertical lines represent 
the exact bi values. This is a particularly sensitive diagnostic. As seen from the figure, the bi 
values calculated from this first-order scheme bear almost no resemblance to the exact values. 

If parabolic interpolation of ψ is used instead of the linear interpolation so far considered, 
there are two distinct cases, both leading to second-order methods. An additional second-order 
method is obtained by averaging the first two. Figure 5 shows a second-order downwind-weighted 
interpolation; the formula (for positive c) is, 

across cell (i—N—1). From (13), the corresponding downwind-weighted linear interpolant for  
across cell (i—N—1) is, 
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This is shown in Figure 6. The left-face flux is then obtained from (15) and (29), setting ξ= —h∆c. 
This gives, 

Using the corresponding formula for the right-face flux, the update equation is equivalent to, 

This is the large-∆t extension of the Lax-Wendroff or Leith method, which is recovered in its 
standard form when c< 1. 

The results of the test problem (after 100 time-steps, with c= 10.2) are shown in Figure 7. Now 
the (downwind-weighted, piecewise linear) sub-cell interpolation, (x), can be distinguished from 
the values. In this case, the most obvious feature is the set of trailing numerical oscillations 
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{phase-lag dispersion), typical of this method. This is accentuated in the bi data. In this case, 
numerical dispersion is a function of ∆c. Figure 8 shows a close-up of the oscillating behaviour 
in the region behind the trailing edge of the rectangular pulse. The spiky nature of the 
downwind-weighted sub-cell linear interpolation of  is evident. 

Now that the (downwind) second-order update algorithm is available, it is of interest to rewrite 
(27) for the first-order method in the form of (32), together with a 'correction' term. Specifically, 
(27) becomes, 
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The term ∆c(l—∆c)/2 plays the role of an 'artificial diffusion' term. The artificial diffusion 
coefficient can be defined as, 

For given h and ∆t, the right-hand side is a function of u( = ch/∆t). In terms of c, this is a series 
of parabolic arcs. It is more instructive to rewrite this in the following way, 

For given u and h, the first factor on the right-hand side is fixed (this is the 'steady-state' artificial 
diffusion coefficient) and the term in square brackets is a function of c, or equivalently, ∆t( = ch/u). 
Figure 9 shows the behaviour as a function of c. From this it should be clear that, for the 
first-order method, a larger c value corresponds to less overall distortion due to artificial diffusion4. 
In practice, however, other considerations may preclude the use of a very large Courant number. 
Thus, first-order methods should be avoided—especially as third- and higher-order methods 
(discussed below) are so much more accurate and cost-effective. 

Another type of parabolic interpolaion of ψ involves an upwind bias. This is shown in Figure 10 
for positive c. Although the interpolation depends (only) on ψ i - N - 1 , ψi-N-2, and ψi-N-3, it is 
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more convenient to rewrite it as a modification of the second-order downwind formula. Across 
cell (i—N— 1), for positive c, this gives, 

The corresponding formula for  is more conveniently written in terms of (ξ + h/2), as, 

across cell (i—N—1), clearly showing the upwind-biassed linear interpolation, as seen in Figure 11. 
Results for this second-order upwind method are shown in Figure 12, using the usual parameter 

values. In this case, there is significant phase-lead numerical dispersion, manifested in the 
unphysical oscillations ahead of sharp features in the profiles. In particular, the computed bi 
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values at many points bear little resemblance to the exact values. Figure 13 shows a close-up of 
the behaviour ahead of the trailing-edge of the rectangular pulse. Compare this with Figure 8. 

Fromm's method12 was an attempt to reduce phase error by taking a simple arithmetic mean 
of the Lax-Wendroff (phase-lag) method and the second-order upwind (phase-lead) method, for 
c<1. The same averaging can be used for c>1, as well, giving the large-∆t generalisation of 
Fromm's method. From (29) and (36), this cell-centred second-order ψ interpolant takes the form, 

across cell (i—N — 1). This is shown in Figure 14. The corresponding  interpolant is again more 
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conveniently written in terms of (ξ +h/2), as, 

across cell (i—N—1). This is shown in Figure 15. Note how both the ψ and the  interpolants are 
centred with respect to cell (i—N—l), and therefore independent of the sign of c (in contrast to the 
two previous methods). 

Cell-centred interpolants lead to schemes with better phase behaviour than those based on 
upwind- or downwind-biassed interpolants. In fact, phase error of all schemes based on 
cell-centred interpolants is zero at half-interger values of c (i.e., ∆c=0.5) as well as at interger 
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values. The improved phase behaviour is seen immediately in the cell-centred second-order case 
from the results of the usual test problem, shown in Figure 16. In contrast to the downwind- and 
upwind-weighted second-order methods (which show large regions of oscillatory behaviour), the 
cell-centred second-order method exhibits only relatively small overshoots and undershoots near 
regions involving sudden changes in gradient of  (i.e., large b values). Note, particularly, the 
much better agreement, in general, between the computed and exact 6s. Figure 17 gives a close-up 
of the region near the step-down discontinuity. 

Higher-order piecewise polynomial interpolation 
Piecewise polynomial interpolation of ψ across each cell can be extended to higher and higher 

order, recursively, following a process analogous to that outlined in Reference 1. For example, 
a centred third-order ψ interpolant across cell (i—N— 1) is shown in Figure 18. The formula is 
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again conveniently written as a modification of the downwind second-order method, as, 

across cell (i—N—1). Note the similarity in structure between this and the cell-centred 
second-order interpolant, (38). It is, therefore, interesting to compare the coefficient of the 
second-difference term, for ξ = —h∆c. For the cell-centred second-order interpolant, 

And for the cell-centred third-order interpolant, 

These are plotted in Figure 19; note that the difference between the two curves is always small 
and, in fact, the curves coincide at ∆c = 0, ∆c = 0.5, and ∆c→1. 

With piecewise parabolic interpolation of , a new phenomenon occurs. For (first- and) 
second-order methods, the (linear)  interpolant equals  at the centre of the cell; i.e., the cell 
node value, (xi), is the same as the cell average. At third order and above, this is no longer the 
case; the node value is not, in general, equal to the cell average, 

Differentiating (40) and writing in terms of (ξ +h/2), gives, across cell (i—N— 1), 

This js shown in Figure 20. The dashed curve is a parabola passing through 
and Ф i -N, at the centres of each cell. The vertical shift in the parabolic interpolant (heavy curve) 
is required to satisfy the cell-average constraint; but, of course, this results naturally from the 
collocation of ψ values. From (44), one sees that the node value at any cell i is related to 
neighbouring cell averages by, 
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Third-order results are shown in Figure 21. As perhaps expected from the velocity-direction-
independent interpolation, phase behaviour is very good. Numerical distortion consists primarily 
of small overshoots and undershoots in the vicinity of large b values. A close-up view of the 
step-down discontinuity region, Figure 22, shows the relatively smooth behaviour of the sub-cell 
interpolants. But, of course, small discontinuities in the value of  (and the slope of ψ) occur at 
cell faces; this is true of all piecewise interpolations, although the discrepancies become smaller 
and smaller as the order is increased. For c< I, the third-order update algorithm is identical in 
structure to the QUICKEST scheme13, except that QUICKEST uses node values rather than 
cell averages. However, it should be clear that if one applies the update algorithm to each of 
the terms on the right-hand side of (45), then (because of the linearity) the same algorithm applies 
to ias well. 

Higher order piecewise polynomial methods can easily be constructed. The results are identical 
to those of Reference 1, except that c is replaced by ∆c, and node values by cell averages. 
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Cubic-spline interpolation of ψ 
A cubic-spline interpolation of ψ corresponds to a parabolic-spline interpolation of . Because 

of the way in which cubic splines are constructed—matching value, gradient, and curvature at 
both ends of each cell interval15—the interpolation of ψ is inherently cell-centred. This means 
that the parabolic-spline interpolation of  is cell-centred, as well. Remember that (x) is a 
sub-cell interpolation of cell-average data, satisfying (6). In the more common procedure of 
interpolating point data, parabolic splines have a directional bias15; i.e., a left-to-right sweep in 
general gives a different answer from a right-to-left sweep. 

Usually, a cubic-spline interpolation requires the solution of a tridiagonal matrix equation 
stemming from the matching-conditions across nodes. In the case of periodic boundary conditions, 
the matrix has additional elements in the top-right and bottom-left corners. This 'periodic-
tridiagonal' system can be easily solved using a modification of the Thomas algorithm16. In the 
present case, there is a slight complication with the 'periodic' nature of ψ. In fact, ψ is not strictly 
periodic (since it must increase across the domain by a constant equal to the total 'mass' of all 
profiles); however, its first- and second-derivatives are periodic, and these are the quantities 
involved in the matrix structure. More details of this and the related 'reach-back' problem—when 
cell (i—N— 1) is outside of the computational domain (so that ψ* must be adjusted by a multiple 
of the total 'mass')—are sketched in the Appendix. 

The cubic-spline results are shown in Figures 23 and 24. Although this is formally only a 
third-order method, the overall features of the simulation appear to be considerably better than 
the piecewise third-order method, Figure 21. Phase accuracy and smooth-function resolution are 
excellent. However, as with all (cell-centred) higher-order polynomial methods, a few oscillations 
occur in the vicinity of large b values. Note, from the close-up of Figure 24, the continuity in 
both value and gradient in the parabolic-spline interpolation of . 

Shape-preserving constraints 
Piecewise polynomial or spline interpolation schemes do not, in general, guarantee convexity 

preservation of ψ(x). This means that extraneous inflection-points in ψ (or, equivalently, 
extraneous extrema in ) may occur, thereby exciting unphysical numerical oscillations—which 
grow and disperse as the profile evolves. Figure 25 shows two alternative interpolations through 
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a set of four ψ values in the vicinity of cell (i — N — 1). Note that the discrete second-differences of 
ψ at each side of the cell, bi-N-2 and bi_N_1, are both positive in the case shown; convexity 
preservation means that the curvature of the interpolant should also be positive throughout cell 
(i—N—l). An inflection-point in the ψ interpolant within a cell is allowed only if there is a change 
in sign between bi-N-2 and bi-N-1 across cell (i—N—1). Figure 25a depicts an extraneous 
inflection-point (EIP), whereas 25b shows convexity preservation. 

Figure 26 shows two different, very simple, geometric constraints to enforce convexity locally, 
across cell (i—N—l). In part a, the interpolant is constrained to lie within the small triangular 
region bounded by the chord joining Ψ values across the cell and the two tangents joining ψ 
values across the adjacenf cells. In part b of the figure, the lower constraint is a parabola, tangent 
to (at least) one of the constraints in part a, but not violating the other. Figure 27 defines some 
notation for analysing these constraints. For convenience,j replaces (i—N — l). Points 1, 2, and 3 
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represent possible ψ* values on the respective curves, a distance h∆c to the left (upstream for 
c>0) of the right face of cell j.Corresponding 'reference'  values within cell j are defined by, 

At point 1, in both cases, the reference value is, 

At point 2 in Figure 27a, 
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or, equivalently, 

And at point 3 in Figure 27a, 

At point 2 in Figure 27b, it is not hard to show that, 

whereas, at point 3, 

or, in other words, the parabolic constraints in part b are Ac-weighted averages of the constraints 
in part a. 

It is instructive to rewrite these constraint equations in terms of normalised variables1. Define 
a normalised variable with respect to cell j ( = 1-N-1) as, 

Then the normalised reference values in part a of Figure 28 can be written, 

and 

These may be recognised as the universal limiter constraints described in Reference 1 (using 
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values instead of  values)—with c replaced by ∆c in (55). For part b of the figure, the normalised 
values are, 

giving, from (49) and (54), 

whereas, 

or 

These are, in fact, the so-called TVD limiter constraints14, extended to large Courant number 
and written in terms of normalised variables17. 

Both sets of constraints are summarised in normalised-variable diagrams in Figures 28a and 
b, respectively. In these diagrams, the ordinate is normalised with respect to cell 
(i—N— 1), where is defined as follows: 

the notation implying that is what the left-face value of cell (i—N) would be if the 
Courant number were ∆c rather than c. 

The convexity-preserving constraints of Figure 26 or, equivalently, the normalised-variable 
diagrams of Figure 28 are appropriate only in cases where bi-N-1 and bi-N-2 are both of the 
same sign. This is the so-called locally monotonic region, 

If one of the b values is zero or (more importantly) if they change sign across the cell (representing 
an inflection-point in ψ, i.e., a local extremum in ), special care needs to be taken to avoid 
'clipping'. In this case, eitfier 
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or 

Figure 29 shows two possibilities for a cell across which b changes sign. In part a, linear 
interpolation is used for ψ across the cell. As seen, this leads to a clipped flat top in the  profile; 
i.e., the maximum local  value can never exceed the local maximum . This is equivalent to 
using the first-order scheme within the extremum cell—a common feature of most flux-limiting 
schemes. By contrast, part b of the figure shows a more realistic representation of the (real) 
intlection-point in ψ that must occur within the cell. This gives good peak resolution in the  
profile. A simple pattern-recognition strategy that resolves real inflection-points in ψ while 
maintaining monotonic transitions in , when necessary, is outlined in the appendix. 

For reference, Figure 30 shows results of the test problem using the so-called MUSCL scheme18, 
extended to large ∆t. In terms of the present analysis, this is the cell-centred second-order method 
(the large-∆t extension of Fromm's method), (38), with the TVD limiter applied in locally 
monotonic regions and (the large-c version of) first-order upwinding in non-monotonic regions. 
Although step-resolution is monotonic, the close-up view in Figure 31 shows that serious clipping 
(and concomitant spreading) occurs in the vicinity of the narrow Gaussian peak, since (in keeping 
with traditional TVD strategy) the inflection-point-resolution algorithm is not activated in this 
case. Some clipping of other profiles is also noticeable in Figure 30. 

Figures 32 and 33 show results for the cubic-spline scheme, using the universal limiter of 
Figure 36a applied to ψ, together with the inflection-point-resolution algorithm. Step resolution 
is relatively sharp and monotonic. Moreover, this is achieved without corrupting the good 
peak-resolution properties of the cubic-spline scheme. Even sharper—in fact, exact—sub-cell 
resolution of discontinuities can be achieved by a process called automatic compressive 
enhancement (ACE). Roughly speaking, the ACE strategy consists of a weighting scheme that 
'pulls' the interpolation toward limiter R2 or R3 (depending on Ac) in cells containing a 
near-discontinuity (as determined by a simple pattern recognition algorithm, described in the 
Appendix). Figure 34 shows results obtained when this additional feature is applied to the 
cubic-spline base scheme. Results are shown at 97 ∆t with c=10.2, so that the discontinuity 
occurs within a cell (rather than at a face). Details of the step region are shown in Figure 35. 
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These results should be compared with those of other 'super-compressive' schemes, such as 
Superbee14, Super-C1, and Hyper-C1, where indiscriminate use of compressive limiters leads to 
strong clipping and 'stair-casing'. 

STABILITY ANALYSIS 

For pure convection, the exact one-dimensional complex amplitude ratio19 is, 

where 0 is the nondimensional wavenumber and Expanding the second factor in a 
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Taylor series gives, 

If a numerical G matches this expression through all terms up to (and including) 0N, it is an 
Nth-order method, in both space and time. The scheme is stable provided that |G |≤1 for all 0 
( 0 ≤ 0 ≤ π ) . 

As an example, consider the large-∆t downwind second-order method (the extension of the 
Lax-Wendroff method). The update equation, (32), is rewritten here for convenience, 
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The corresponding complex amplitude ratio is, 

This can be factored into, 
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which can be written, 

where the notation implies that the term in curly brackets in (69) is the (standard) Lax-Wendroff 
G—but for ∆c rather than c. Since it is well known that, 

it is clear that |GLW(∆c)|≤1, because Ac is less than unity, by definition. The large-∆t second-order 
downwind scheme is thus stable for any value of c. 

In general, one-dimensional, constant-u, constant-h NIRVANA schemes are always equivalent 
to an update of the form, 

using the notation of (61). This is equivalent to an update of cell (i—N) using the remnant 
Courant number, Ac, together with a translation across N mesh-widths. The large-time-step G 
can then be written in terms of the small-time-step G as follows 

So, if the small-time-step G is stable (for ∆c< 1), the corresponding large-time-step G is stable 
for any value of c. 

This is the appropriate manifestation of the CFL condition; since the discrete solution is 
known everywhere at the earlier time-level, there should be no CFL stability constraint on the 
time-step. The reason that many well-known explicit schemes need to satisfy rather stringent 
Courant-number constraints (often c≤1 , or, in the case of second-order upwinding, c≤2) has 
nothing to do with the CFL condition. Rather, it stems from a range restriction on the validity 
of the local piecewise interpolation used. The restriction may be stated as follows: in any cell in 
which the interplant is used, it must satisfy the cell-average constraint, (6), for that cell. As an 
example of a local interpolant extended beyond its valid range, Figure 36 shows Lax-WendrofT, 
downwind-weighted interpolants for the two faces of cell i. For the situation shown, i.e., 

values of the right-face  interpolant within cell (i —1) are used to extend the flux integral 
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calculation. Clearly these values do not satisfy the cell-average constraint for cell (i—1), and 
consequently, the right-face flux is (in this case) far too large. Similarly, values of the left-face 
interpolant within cell (i—2) do not satisfy the cell-average constraint for that cell, and as a result, 
the left-face flux is (in this case) too small. This quickly leads to numerical divergence. 

If only the local information is used in the definition of the piecewise interpolant, then, clearly 
from Figure 36, in this case the range of validity of the interpolation must be retricted to, 

or, equivalently, |c|≤1. But, of course, there is no need to take such a 'short-sighted' view of the 
interpolation. If one takes a global view of the piecewise interpolation (using different local 
interpolation equations over each cell, each satisfying the cell-average condition), there is no 
Courant-number constraint. This is immediately obvious in the case of global interpolants, such 
as splines. In all cases, the CFL condition is irrelevant, since the numerical domain of dependence 
is the whole field. 

Returning attention to (73), it should be clear that the order of accuracy of a given NIRVANA 
scheme can be determined from the Taylor expansion of GSTS, since the left factor is an exact 
expression, representing the translation across N mesh-widths. It is not hard to show that 
Nth-order (piecewise or spline) interpolation of ψ leads to an Nth-order accurate scheme19 (in 
both space and time), matching the Taylor expansion of GSTS through all terms up to (and 
including) 0N. 

GENERALISATIONS 

The NIRVANA scheme has been described here for the simplest possible conditions—one-
dimensional pure advection at constant velocity over a uniform mesh. Although this analysis 
should be of theoretical interest, several generalisations will need to be made in order to construct 
a practical algorithm for applied CFD. This section sketches some initial ideas for such 
generalisations; however, no attempt is made to demonstrate the validity of these proposals here. 
Practical applications will be reported at a later date. 

The most straight-forward generalisation is to the use of a variable one-dimensional mesh. 
Two things need to be changed. First, the definition of ψi given by (10) is easily generalised8 to 
include the variable mesh-width inside the summation sign, 

Secondly, interpolation formulae for ψ(x) will, of course, involve the variable mesh size. This is 
easily accomplished using Lagrange or Newton interpolants in the piecewise polynomial cases; 
spline interpolants automatically include a variable mesh in their basic formulation15. The 
universal limiter (or TVD) convexity-preservation constraints require minor modification, 
although the geometric structure (defined in Figure 26), for example) remains the same. Note 
that, once ψ(x) is found from the interpolation (globally), then ψ* in (15) for the determination 
of the (left-face) flux is given by, 

where x1 is the coordinate the face in question. This is, in fact, the simplest way of computing 
the constant-/) value of ψ*, as well. Note that N is defined implicitly by the inequalities 

The scheme can also be generalised to handle some forms of spatially varying known advecting 
velocity fields in one dimension. More specifically, the situation in which the velocity is 
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approximated to be piecewise constant over each cell and each time-interval is easily handled4. 
Figure 37 shows an (x,t) characteristic corresponding to a steady velocity field that is piecewise 
constant in space (the ideas sketched here can be extended to curved, simple characteristics—at 
added expanse). The problem is to determine the departure point, x*, of the characteristic that 
just reaches the left face of cell i at time-level ( n + 1). Once this is known, the advection flux is 
the intergral of everything swept into the face, from x* to x1,. From the diagram, 

or 

where cp = up∆t/hp and N is determined from the generalisation of (78), 

Once x* is found, the face-values and update can be computed in the usual way. 
Nonlinear one-dimensional scalar problems and systems are significantly more difficult— 

especially in cases where characteristics converge to form shocks. Flux calculations will require 
a more sophisticated prediction step for local (approximate) characteristics, analogous to the 
so-called Riemann-solvers used in compressible aerodynamics codes7. 

Multidimensional problems are often handled by the simple expedient of applying a 
one-dimensional operator successively in each coordinate direction. This could certainly be done 
with the one-dimensional NIRVANA scheme. However, locally one-dimensional time-splitting 
of this kind often leads to other errors20 For example, in a steady, solenoidal, spatially varying 
advection field, an initially constant scalar does not remain constant! Nevertheless, initial tests 
using the 1D NIRVANA scheme in a time-split mode suggest that this could be developed into 
a very powerful technique for nonlinear, multidimensional, advection-dominated problems. 

A more interesting (and challenging) procedure is sketched in Figure 38, showing the calculation 
of flux through a single face of a rectangular two-dimensional control-volume cell for a prescribed 
(time-invariant) velocity field. In principle, this is a conservative, flux-based formulation. The 
advective flux is given by the spatial flux integral. 

where the 'advection area' is that covered by the streamlines shown in the diagram. There are 
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two problems. First is the problem of calculating the flux-integral in an accurate and inexpensive 
way. Even if the streamlines' shape and extent were known exactly, this is a nontrivial task. The 
second (and even more difficult) problem is to estimate Ф(x,y) from the (known) cell-average 
data—in an accurate and shape-preserving manner. 

In one dimension, both of these problems are solved by the introduction of the integral 
variable, ψ. One could try a similar strategy in two dimensions8. For example, on a uniform 
square grid of size (imax x jmax), define, 

where 

and 

In this case, discrete ψ values occur at vertices of cells. Now perform an accurate, 
shape-preserving, two-dimensional interpolation to give ψ(x,y). Then Ф(x,y) is obtained by 
cross-differentiation, 

With this definition of Ф, the area-integral in (82) can be converted into line-integrals of either 
x- or y-derivatives of ψ along the bounding streamlines (analogous to the point-evaluation of 
ψ in the one-dimensional case). This idea extends to three dimensions, where volume-integrals 
of Ф can be converted to surface-integrals of derivatives of ψ. 

As in the one-dimensional case, the crucial step is the accurate, shape-preserving interpolation 
of ψ. In two dimensions, assume that the advection area for each face can be approximated by 
a parallelogram defined by 'locally constant' velocity components. This simplifies the flux-integral 
calculation, provided the sub-cell behaviour is known. Simple bilinear sub-cell interpolation of 
ψ (analogous to linear interpolation in the one-dimensional case) gives the trivial piecewise 
constant 'interpolation' for Ф, 

over cell (i,j). For component cell face Courant numbers less than unity, this leads to 
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a generalisation of first-order upwinding, with good isotropy properties17—but excessive 
concomitant artificial diffusion. As in the one-dimensional case, this interpolation is shape-
preserving, but very inaccurate. Extension to large ∆t values appears to be very complex, 
geometrically. Various (non-shape-preserving) bidirectional parabolic interpolations of ψ(x,y) 
lead to two-dimensional generalisations of the Lax-Wendroff, second-order upwind, and Fromm 
schemes. Two-dimensional cubic interpolation of ψ(x,y) leads to a uniformly third-order 
polynomial interpolation algorithm, equivalent to UTOPIA17. As in the one-dimensional case, 
this is a cell-centred (velocity-direction-independent) interpolation with good accuracy and 
excellent phase behaviour—but it is not shape-preserving. 

The difficult part seems to be the establishment of inexpensive multidimensional shape-
preserving constraints on ψ(x,y) analogous to the simple universal limiter constraints in the 
one-dimensional case. Some progress on the construction of a genuinely multidimensional 
shape-preserving limiter has been made, using an alternative approach17. Progress on this aspect 
of the NIRVANA project must await further developments, as must extensions to multi­
dimensional nonlinear systems. 

Finally, there is the question of diffusion and other terms in the conservation equations. Source 
terms, for example, should be averaged over the time-step and the spatial cell. To second order, 
advection and diffusion terms can be treated independently, and simply added together on the 
right-hand side of the update equation. At third-order and above, however, there is a 
cross-coupling between the two, even in one dimension14: diffusion has an effect on the estimated 
face value, and advection changes the time-averaged normal gradient17. Both of these effects are 
proportional to second spatial derivatives of the transported variable, and lead to straight-forward 
multidimensional formulae17 in the case of |cx|, |cy |≤1. Details of the large-∆t extensions need 
to be worked out. However, the guiding principle is the estimation of terms in the explicit update 
of the governing conservation equation. For example, in one dimension, 

where a is the diffusion parameter, a. = D∆t/h2. Face values and gradients are time-averages, and 
is a space-time-averaged source term. 

CONCLUSIONS 

The NIRVANA project is an ongoing quest for an expicit, single-time-step, conservative, 
flux-based, highly accurate, nonoscillatory finite-volume CFD scheme for multidimensional 
advection-dominated flows, without restrictions on the time-step. In order to demonstrate some 
of the basic features, the analysis in the present paper has focussed on the simplest possible 
nontrivial situation: pure one-dimensional advection at constant velocity on a uniform grid. The 
use of a discrete integral variable, ψ—the cumulative sum of cell-average values—is fundamental 
to the scheme, in order to estimate sub-cell behaviour of the transported variable, Ф(x), by 
differentiation of ψ(x). As emphasized many times, the spatial interpolation of discrete ψi values 
to give ψ(x) is the crucial step in constructing the algorithm. Collocation of ψ at cell faces 
guarantees the cell-average constraint—that cell averages of Ф(x) indeed match the given 
cell-average data, 

In one dimension, the constant-velocity advection update algorithm is extraordinarily simple. 
Each advected face value is obtained from a single evaluation of ψ(x) at a point u∆t upstream 
of the particular face. Because of the global interpolation of ψ (even in the case of piecewise 
polynomials over each cell), there is no stability constraint on the time-step. This is, in fact, 
consistent with the well-known CFL condition, which requires the numerical domain of 
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dependence to include the physical domain of dependence. Since the discrete solution is known 
everywhere at the earlier time-level, the numerical domain of dependence is the entire physical 
domain. 'Stability' conditions that apply to a number of well-known explicit schemes (e.g., that 
the Courant number should be less than or equal to one) are actually not stability conditions at 
all—and certainly should not be labelled 'CFL conditions'. Rather, the Courant-number 
restriction of such methods results from a 'short-sighted' view of the piecewise interpolation 
scheme. The restriction is, in fact, on the range of validity of the local piecewise interpolant. 
Global interpolants, such as splines, do not have this problem. Similarly, if a global view is taken 
of the piecewise polynomial interpolants, there is no stability restriction on the time-step: the 
CFL condition is automatically satisfied. 

Unsophisticated interpolation of ψ (such as piecewise linear and parabolic) was seen to lead 
to large-∆t generalisations of well-known schemes such as the (very diffusive) first-order method, 
and the (dispersive) Lax-Wendroff and second-order upwind schemes. One needs to be careful 
to distinguish between the 'natural upwinding' that occurs with all schemes because of the flux 
integral, and the upwind or downwind bias or cell-centred placement, relative to the cell under 
consideration, of the collocation points used for the interpolation of ψ. Thus, for example, the 
first-order scheme is a natural upwind scheme, but its interpolant is cell-centred. The Lax-
Wendroff scheme and its large-∆t extension involve a downwind-weighted parabolic interpolant. 
Second-order upwinding, by contrast, uses an upwind-weighted parabolic interpolation of ψ. By 
averaging these two second-order schemes, (an unrestricted-Courant-number version of) Fromm's 
method is derived. This involves a velocity-direction-independent interpolant and, in common 
with all cell-centred interpolation schemes, has much better phase behaviour, which was, after 
all, the motivation for Fromm's method in the first place. 

Higher-order piecewise polynomial interpolation can be recursively extended to higher and 
higher order. The third-order NIRVANA scheme reproduces the (large-c generalisation of the) 
QUICKEST algorithm—a scheme based on velocity-direction-independent interpolation, which 
has very good phase accuracy. Fourth and higher even-order downwind weighted schemes are 
all plagued by significant phase-lag dispersion errors, whereas higher odd-order schemes based 
on cell-centred interpolants have excellent phase accuracy and give progressively more accurate 
resolution of all profiles—except for Gibbs' phenomena near sharp features1. A cubic-spline 
interpolation of ψ is equivalent to a parabolic-spline sub-cell interpolation of Ф. This gives very 
good phase accuracy and high resolution. 

Spurious numerical oscillations arise from a lack of shape preservation in the interpolation 
of ψ (or Ф). If an inherently convexity-preserving interpolation algorithm were available for ψ, 
there would be no need for so-called flux limiters. Interestingly enough, a very simple, 
geometrically based, local-convexity-preservation strategy for ψ turns out to be identical in 
structure to the previously (and quite independently) derived universal limiter1—but in this case, 
extended to arbitrarily large Courant number. Another, more restrictive, convexity-preservation 
scheme for ψ is equivalent to the large-∆t generalisation of the TVD limiter1,14. Application of 
the generalised universal limiter convexity-preservation strategy to cubic-spline or higher-order 
piecewise polynomial base schemes gives excellent (nonoscillatory, high-resolution) results when 
combined with a simple pattern-recognition algorithm for resolving real inflection-points in ψ 
(i.e., true local extrema in Ф). Automatic compressive enhancement leads to exact sub-cell 
resolution of discontinuities without clipping extrema or generating anomalous 'stair-casing' in 
other profiles. 

A brief von Neumann stability analysis has identified two factors in the complex amplitude 
ratio: one exact factor representing the simple translation over N mesh-widths, the other 
representing a numerical G based on ∆c. To the extent that the latter is stable for ∆c<l , the 
overall G is always stable for any Courant number. 

Finally some ideas were mentioned, outlining possible avenues for generalisation aimed at 
the development of practical algorithms for highly advective, nonlinear, multidimensional flow 
problems. These point to a number of possible directions for further research. 
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APPENDIX 

Wrap-around strategy 
The periodic boundary conditions employed in the examples in this paper are somewhat 

complicated by the fact that the discrete function to be interpolated, ψi, is in fact the integral 
of the periodic function 

where ψ0=0. Thus ψi is not itself periodic, although its first and second derivatives are. For a 
computational domain of Nh cells, with periodic boundary conditions on the algorithm to 
calculate the right-face flux can be written as follows: 

• Replace the index of the departure cell upwind from the right face, namely cell (i—N), where 
N = INT(c), by i* = i-N + I x Nh, where I= 1 -INT[(i-N)/Nh] so that, 

• Interpolate between ψi* and ψi*-1 to find ψ(x*), where the wrapped-around departure point, 
x* = [(xi + h/2 — ch), modulo(hNh)], will now necessarily lie within the departure cell, as 
calculated above. 

• Finally, the 'total mass' part of ψ(x*), namely IψNh,which was implicitly added on by the 
use of i* in the interpolation, must be removed for the right-face flux calculation: 

Initial conditions 
The discrete cell-average function, is initialised by averaging the exact continuous function 

Фex(x) over the cell i: 
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For the test profiles employed here (with a domain width of 150h), the initial Ф is: 

and this may be integrated analytically to give, 

The standard deviation for the Gaussian profile is taken to be, 

From (A.4), the initial conditions for the cell-averages (excluding the Gaussian profile) take 
the form: 

The discrete integral variable is then given, for i= 1 to 115, by, 

taking ψ0 = 0. 
For the Gaussian profile, 116≤i≤ 150, is calculated from the exact integral function, ψex, 

by combining (A.4) and (A.6) to give, 
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The values of ψex(xi + hl2) and ψex(xi—h/2) are explicitly calculated from (A.6) which gives, for 
example, 

Sub-cell interpolation 
As a diagnostic for the numerical tests, sub-cell interpolants are calculated in a post-processing 

operation, using a fine grid of 200 points to every coarse-grid cell. Let ii be the index on the 
fine grid. The sub-cell integral variable values, ψ(xii)=ψii, are calculated on this grid by 
interpolating between the coarse-grid ψi values in the same manner as for the departure point, 
ψ(x*). The sub-cell function values, Фii (no overbar), are then approximated by a simple backward 
difference, 

) 

where hfine=h/200. This choice gives adequate resolution of any discontinuities in Ф(x) appearing 
in the sub-cell structure. 

Real inflection point discriminator 
Indiscriminate application of the limiter at all cell faces can result in an unnecessary, and 

sometimes significant, reduction in accuracy in certain regions (e.g., at the peak of the Gaussian 
profile). These regions can be identified with extrema in the Ф profile, or inflection points in the 
integral function, ψ. If these 'real' inflection points can be located and the limiter subsequently 
not activated locally, significant improvement can result, without compromising the operation 
of the limiter. 

The algorithm adopted identifies inflection points in ψ resulting from extrema in the basic 
profile by a local change in sign of the second differences 

'Real' inflection points are distinguished from spurious numerical oscillations by the use of a 
tolerance, δ, so that (for a maximum in Ф) the change in sign is actually required to be a change 
from bi>δ to bj<—δ, for j= i+1 or j=i + 2, as i increases (and vice versa for a minimum in Ф). 
So, given an integral-variable value ψ(x*), found by interpolating between ψi* and ψi*-1, the 
algorithm can be written: 

• First check as usual for nonmonotonicity in ψ; i.e., constrain ψ(x*) by, 

• Identify a 'real' inflection point in ψ within the departure-point as satisfying any one of the 
following conditions on the second differences (for a local maximum in Ф): 
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where, 

• If a 'real' inflection point is identified in the ψ field, then the interpolated value, ψ(x*), is 
not further limited. 

• A similar procedure (with appropriate reversal of inequalities) is used for local minima in Ф. 
A tolerance of δ = 0.01 was empirically found to be small enough to recognise 'real' inflection 
points, whilst being large enough to suppress numerical oscillations. 

Automatic compressive enhancement 
In regions of large gradient in Ф (or large curvature in ψ), the interpolant, ψ(x*), can be 

weighted towards the nearer of the two linear constraints, ψR2 and ψR3, used in the universal 
limiter of Figure 27a, thus tightening the curvature in ψ and consequently sharpening the gradient 
of Ф. 

Thus for some tolerance, δC, if, 

(using the notation of A.3) then the interpolant is first constrained by the universal limiter (giving 
ψb = median [ψR1ψaψ(x*),], where ψa = median [ψR1,ψR2,ψR3] and the median of three numbers 
is that number between the other two) and then weighted towards the nearer limiter constraints, ψa. 
Thus, the new 'compressed' interpolant is given by, 

The weighting, y, is itself weighted with ∆c to the neighbouring ratios of the local curvatures, 
constrained to lie between 0 and 1, namely: 

so that, 

Thus, for example,for ∆c small and (A.18) satisfied with bi*+1 small (such as in the region of 
a sharp increase in Ф), then y is weighted by the small ∆c towards β which is itself small and 
so ψ* is strongly weighted towards the limiter constraint, ψa. 

A tolerance of δc=0.1 was empirically found to be small enough to recognise near-
discontinuities without introducing 'stair-casing' to otherwise smooth functions. 
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